Distance-two interpolation for parallel algebraic multigrid

نویسندگان

  • Hans De Sterck
  • Robert D. Falgout
  • J. W. Nolting
  • Ulrike Meier Yang
چکیده

Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large 3D problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those obtained by the parallel modified independent set (PMIS) coarsening algorithm, remedy this complexity growth but lead to nonscalable AMG convergence factors when traditional distance-one interpolation methods are used. In this paper, we study the scalability of AMG methods that combine PMIS coarse grids with long-distance interpolation methods. AMG performance and scalability are compared for previously introduced interpolation methods as well as new variants of them for a variety of relevant test problems on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS-coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers. Copyright q 2007 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A GPU Accelerated Aggregation Algebraic Multigrid Method

We present an efficient, robust and fully GPU-accelerated aggregation-based algebraic multigrid preconditioning technique for the solution of large sparse linear systems. These linear systems arise from the discretization of elliptic PDEs. The method involves two stages, setup and solve. In the setup stage, hierarchical coarse grids are constructed through aggregation of the fine grid nodes. Th...

متن کامل

A Massively Parallel Algebraic Multigrid Preconditioner based on Aggregation for Elliptic Problems with Heterogeneous Coefficients

This paper describes a massively parallel algebraic multigrid method based on non-smoothed aggregation. A greedy algorithm for the aggregation combined with an appropriate strength-of-connection criterion makes it especially suited for solving heterogeneous elliptic problems. Using decoupled aggregation on each process with data agglomeration onto fewer processes on the coarse level, it weakly ...

متن کامل

Independent Quality Measures for Symmetric Algebraic Multigrid Components

A new algebraic multigrid (AMG) method is developed to replace a fast, parallel direct solver used for the coarse-grid problem in a massively parrallel (P ≥ 10) implementation of a multilevel method, resulting in a dramatic improvement in overall efficiency. In addition to being sparse and symmetric positive definite (SPD), these coarse-grid problems are characterized by having few degrees of f...

متن کامل

Algebraic multigrid methods based on compatible relaxation and energy minimization

This paper presents an adaptive algebraic multigrid method for the solution of positive definite linear systems arising from the discretizations of elliptic partial differential equations. The proposed method uses compatible relaxation to adaptively construct the set of coarse variables. The nonzero supports for the coarse-space basis is determined by approximation of the so-called two-level “i...

متن کامل

Application of an Energy-minimizing Algebraic Multigrid Method for Subsurface Water Simulations

Efficient methods for solving linear algebraic equations are crucial to creating fast and accurate numerical simulations in many applications. In this paper, an algebraic multigrid (AMG) method, which combines the classical coarsening scheme by [19] with an energy-minimizing interpolation algorithm by [26], is employed and tested for subsurface water simulations. Based on numerical tests using ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008